
On Some Properties of Class Q∗operators

Abstract

The study of operators in Hilbert spaces holds significant importance, finding broad ap-
plications in diverse fields such as computer programming, financial mathematics and
quantum physics. Many authors have extended the concept of normal operators in an
attempt to provide practical solutions to complex problems in diverse fields. This paper
focuses on a class Q∗ operators in a Hilbert space H. An operator T ∈ B(H) (where B(H)
represents bounded linear operators acting on H) is said to be class Q∗ if T ∗2T 2 = (TT ∗)2.
By considering the properties of normal operators and other operators related to normal
the study investigated the commutation relations and properties unique to class Q∗ op-
erators. The study shows that if two operators T, S ∈ Q∗ are such that the sum (T + S)
commutes with (T+S)∗, then (T+S) ∈ Q∗ and the product TS ∈ Q∗ if T and S commute
with their adjoint. The results of this research are a valuable resource for mathematicians
and physicists interested in the properties and applications of class Q∗ operators fueling
further innovations in functional analysis.

Keywords: Hilbert spaces, Normal operators, n-normal operators, adjoint, class Q* oper-
ators, Commutation relations.

1 Introduction
Throughout this paper B(H) denotes the algebra of all bounded linear operators on Hilbert
space H. A linear operator T on a Hilbert space H is said to be bounded if there exist a
constant c > 0 such that ∥Tx∥ ≤ c ∥x∥ ∀x ∈ H. T is called self-adjoint if T = T ∗, invertible
with inverse S if there exists S ∈ B(H) such that ST = I = TS where I ∈ B(H) is the identity
operator. An operator T ∈ B(H) is said to be normal if it commutes with its adjoint
i.e (T ∗T = TT ∗), equivalently T ∗T − TT ∗ = 0. An operator T ∈ B(H) is said to be positive
if T ∗ = T and ⟨Tx, x⟩ ≥ 0 ∀x ∈ H . An operator T ∈ B(H) is said to be n-power normal
if T nT ∗ = T ∗T n for n ∈ N , class Q operator if for any T ∈ Q, T ∗2T 2 = (T ∗T )2. T ∈ B(H)
is called a class Q∗ if T ∗2T 2 = (TT ∗)2 and Quasi-class Q if T ∗3T 3 − 2T ∗2T 2 + T ∗T ≥ 0 . An
operator T ∈ B(H) is in class µ if T 2 =−T ∗2 An operator T ∈ B(H) is called an n-power-
hyponormal operator if T nT ∗ ≤ T ∗T n. This class includes all normal, all n-normal and all
hyponormal operators. An operator T ∈ B(H) is Binormal if T ∗T commutes with TT ∗, That
is (T ∗T )(TT ∗) = (TT ∗)(T ∗T ). [1] studied class Q∗ operators and looked at properties such as
adjoint, the inverse and operators unitarily equivalent to operators in class Q∗ operators. This
paper will study other properties of class Q∗ operators that have not yet been studied.
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2 Methodology
[5] introduced class Q operators on a Hilbert space where an operator T ∈ B(H) is in class Q
if T ∗2T 2 = (T ∗T )2. Class Q operators were enlarged to n power class Q operators by [10]. [12]
studied class Q∗ operators, showed that class Q∗ operators differ from class Q operators, and
stated some of the properties as seen in Proposition 2.1.

Proposition 2.1: [12]
Let T ∈ B(H), if T ∈ Q∗, then the following hold:

(i) T ∗2 is in Q∗

(ii) T−1 ∈ Q∗ provided it exists.

(iii) Any operator S ∈ B(H) that is unitarily equivalent to T is also in Q∗.

Many authors have also investigated other properties such as Cartesian decomposition on differ-
ent operators in Hilbert spaces. For instance, [1] studied Cartesian decomposition on n-normal
operators and the results are stated in Proposition 2.2.

Proposition 2.2: [1]
Let T ∈ B(H) with the Cartesian decomposition T = A + iB where A and B are self-adjoint
operators. Then T is a 2-normal operator if and only if B2 commutes with A and A2 commutes
with B.

[10] proved that if T ∈ B(H) with the Cartesian decomposition T = A + iB where A and B
are self adjoint operators, then T is binormal if and only if

(i) AB3 +B3A = A3B +BA3

(ii) A2BA+ ABA2 = B2AB +BAB2

In [7], the author showed that if T ∈ B(H) with the Cartesian decomposition T = A + iB,
then T ∈ µ if and only if A2 = B2.

This paper will focus on various properties of class Q∗ operators that have not yet been studied.
These properties include convexity, Cartesian decomposition, sum and product, direct sum and
the tensor product of class Q∗ operators.

3 Results and discussions
Example 3.1 illustrates that class Q∗ operators are not convex.

Example 3.1
Consider two operators T, S ∈ Q∗ such that T =

[
1 0
−1 0

]
and S =

[
2 0
0 1

]
Let M = 1

2
T + 1

2
S

M =
1

2

[
1 0
−1 0

]
+

1

2

[
2 0
0 1

]
=

[
1
2

0
−1

2
0

]
+

[
1 0
0 1

2

]
=

[
3
2

0
−1

2
1
2

]
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M∗ =

[
3
2

−1
2

0 1
2

]

M∗2 =

[
3
2

−1
2

0 1
2

] [
3
2

−1
2

0 1
2

]
=

[
9
4

−1
0 1

4

]

M2 =

[
3
2

0
−1

2
1
2

] [
3
2

0
−1

2
1
2

]
=

[
9
4

0
−1 1

4

]

M∗2M2 =

[
9
4

−1
0 1

4

] [
9
4

0
−1 1

4

]
=

[
97
16

−1
4

−1
4

1
4

]

MM∗ =

[
3
2

0
−1

2
1
2

] [
3
2

−1
2

0 1
2

]
=

[
9
4

−3
4

−3
4

1
2

]

(MM∗)2 =

[
9
4

−3
4

−3
4

1
2

] [
9
4

−3
4

−3
4

1
2

]
=

[
90
16

−18
16

−33
16

13
16

]
Now M∗2M2 ̸= (MM∗)2 , M /∈ Q∗ and therefore Q∗ is not convex.

Theorem 3.2 gives the results for the Cartesian decomposition on class Q∗ operators on a Hilbert
space.

Theorem 3.2

Let T ∈ B(H) with the Cartesian decomposition T = A + iB where A and B are self-adjoint
operators. Then T ∈ Q∗ if

(i) ABAB +BABA = A2B2 +B2A2

(ii) A3B2B3A2BA3ABA2 = 0

Proof

Since T ∈ Q∗, then T ∗2T 2 = (TT ∗)2

Now T = A+ iB , T ∗ = A− iB

TT ∗ = (A+ iB)(A− iB) = A2 − iAB + iBA+B2

T ∗2 = (A− iB)(A− iB) = A2 − iAB − iBA− B2

T 2 = (A+ iB)(A+ iB) = A2 + iAB + iBA− B2

T ∗2T 2 = (A2 − iAB − iBA− B2)(A2 + iAB + iBA− B2)

= A4 + iA3B + iA2BA− A2B2 − iABA2 + ABAB

+ AB2A− iAB3 − iBA3 +BA2B +BABA

+ iBAB2 − B2A2 − iB2AB − iB3A+B4

(1)
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(TT ∗)2 = (A2 − iAB + iBA+B2)(A2 − iAB + iBA+B2)

= A4 − iA3B + iA2BA+ A2B2 − iA3B − ABAB

+ AB2A− iAB3 + iBA3 +BA2B − BABA

+ iBAB2 +B2A2 − iB2AB + iB3A+B4

(2)

Since T ∈ Q∗, then equation (1) must equate to equation (2).
On further simplification,

T ∗2T 2 = (TT ∗)2

= iA3B − A2B2 − iABA2 + ABAB − iAB3 +BA2B +BABA− B2A2 − iB3A

= −iA3B + A2B2 − iA3B − ABAB + iBA3 − BABA+B2A2 + iB3A

Equating the real part, we have

ABAB +BABA− A2B2 = A2B2 +B2A2 − ABAB − BABA

=⇒ ABAB +BABA = A2B2 +B2A2

=⇒ AB = BA

Thus A commutes with B

Equating the imaginary part, we have

iA3B − iABA2 − iBA3 − iB3A = −iA3B − iA3B + iBA3 + iB3A

A3B − ABA2 − BA3 − B3A = −A3B − A3B +BA3 +B3A

Which means
2A3B − 2B3A− 2BA3 − ABA2 = 0

Theorem 3.3 states the result on the commutation relation in class Q∗ operators.

Theorem 3.3
Let Tand S be bounded linear operators in Q∗ such that the sum (T + S) commutes with
(T + S)∗. Then (T + S) ∈ Q∗.

Proof

(T + S)∗2(T + S)2 = (T + S)∗(T + S)∗(T + S)(T + S)

= (T + S)∗(T + S)(T + S)∗(T + S)

= (T + S)(T + S)∗(T + S)(T + S)∗

= (T + S)(T + S)(T + S)∗(T + S)∗

= (T + S)2(T + S)∗2

= ((T + S)(T + S)∗)2

Hence (T + S) ∈ Q∗
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Example 3.4
Let T and S be operators in class Q∗ such that

T =

[
1 0
0 1

]
and S =

[
2 0
0 1

]

(T + S) =

[
1 0
0 1

]
+

[
2 0
0 1

]
=

[
3 0
0 2

]

(T + S)∗ =

[
3 0
0 2

]

(T + S)(T + S)∗ =

[
3 0
0 2

] [
3 0
0 2

]
=

[
9 0
0 4

]

(T + S)∗(T + S) =

[
3 0
0 2

] [
3 0
0 2

]
=

[
9 0
0 4

]
Now

(T + S)∗2 =

[
3 0
0 2

] [
3 0
0 2

]
=

[
9 0
0 4

]

(T + S)2 =

[
3 0
0 2

] [
3 0
0 2

]
=

[
9 0
0 4

]

(T + S)∗2(T + S)2 =

[
9 0
0 4

] [
9 0
0 4

]
=

[
81 0
0 16

]

(TT ∗)2 = (

[
3 0
0 2

] [
3 0
0 2

]
)2 = (

[
9 0
0 4

]
)2 =

[
81 0
0 16

]
Hence (T + S) ∈ Q∗

Remark 3.5
If two operators T, S ∈ Q∗ are such that the sum T + S does not commute with (T + S)∗ then
T + S is not necessarily in class Q∗ operators.
Example 3.6 shows that the sum of two operators T and S in class Q∗ such that
(T + S)(T + S)∗ ̸= (T + S)∗(T + S) does not belong to class Q∗.

Example 3.6

Let T =

[
1 −1
1 1

]
and S =

[
2 0
0 1

]
be two operators in class Q∗.

T + S =

[
1 −1
1 1

]
+

[
2 0
0 1

]
=

[
3 −1
1 2

]
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(T + S)∗ =

[
3 1
−1 2

]

(T + S)(T + S)∗ =

[
3 −1
1 2

] [
3 1
−1 2

]
=

[
10 1
1 5

]

(T + S)∗(T + S) =

[
3 1
−1 2

] [
3 −1
1 2

]
=

[
10 −1
−1 5

]
Therefore (T + S) is not normal.
Consequently,

(T + S)2 =

[
3 −1
1 2

] [
3 −1
1 2

]
=

[
8 −5
5 3

]

(T + S)∗2 =

[
3 1
−1 2

] [
3 1
−1 2

]
=

[
8 5
−5 3

]

(T + S)∗2(T + S)2 =

[
8 5
−5 3

] [
8 −5
5 3

]
=

[
89 −25
−25 34

]

((T + S)(T + S)∗)2 = (

[
3 −1
1 2

] [
3 1
−1 2

]
)2 =

[
10 1
1 5

] [
10 1
1 5

]
=

[
102 15
15 6

]
Clearly (T + S)∗2(T + S)2 ̸= ((T + S)(T + S)∗)2 and so(T + S) /∈ Q∗

The result on the product of two class Q∗ operators is given in theorem 3.7

Theorem 3.7
Let Tand S be bounded linear operators in Q∗ such that T and S commute with their adjoint.
Then (TS) ∈ Q∗.

Proof
(TS)∗2(TS)2 = (TS)∗(TS)∗(TS)(TS)

= S∗T ∗S∗T ∗TSTS

= S∗T ∗S∗TT ∗STS

= T ∗S∗TS∗ST ∗TS

= T ∗TS∗SS∗TST ∗

= TT ∗SS∗TS∗ST ∗

= TST ∗TS∗SS∗T ∗

= TSTT ∗SS∗T ∗S∗

= TSTST ∗S∗T ∗S∗

= (TS)2((T ∗S∗))2

= (TS)2((TS)∗))2

= ((TS)(TS)∗)2
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Now (TS)∗2(TS)2 = ((TS)(TS)∗)2 implying that (TS) ∈ Q∗

Example 3.8
Consider two operators T, S ∈ Q∗ such that T =

[
2 −2
2 2

]
and S =

[
0 −i
i 0

]
T ∗ =

[
2 2
−2 2

]
and S∗ =

[
0 −i
i 0

]

TS∗ =

[
2 −2
2 2

] [
0 −i
i 0

]
=

[
−2i −2i
2i −2i

]

S∗T =

[
0 −i
i 0

] [
2 −2
2 2

]
=

[
−2i −2i
2i −2i

]
Therefore TS∗ = S∗T

T ∗S =

[
2 2
−2 2

] [
0 −i
i 0

]
=

[
2i −2i
2i 2i

]

ST ∗ =

[
0 −i
i 0

] [
2 2
−2 2

]
=

[
2i −2i
2i 2i

]
Therefore T ∗S = ST ∗

TS =

[
2 −2
2 2

] [
0 −i
i 0

]
=

[
−2i −2i
2i −2i

]
Let the product TS be M M is a class Q∗ operator since

M =

[
−2i −2i
2i −2i

]
,M∗ =

[
2i −2i
2i 2i

]

M∗2 =

[
2i −2i
2i 2i

] [
2i −2i
2i 2i

]
=

[
0 8
−8 0

]

M2 =

[
−2i −2i
2i −2i

] [
−2i −2i
2i −2i

]
=

[
0 −8
8 0

]

M∗2M2 =

[
0 8
−8 0

] [
0 −8
8 0

]
=

[
64 0
0 64

]

MM∗ =

[
−2i −2i
2i −2i

] [
2i −2i
2i 2i

]
=

[
8 0
0 8

]

(MM∗)2 =

[
8 0
0 8

] [
8 0
0 8

]
=

[
64 0
0 64

]
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Therefore M is class Q∗ since M∗2M2 = (MM∗)2.

Remarks 3.9
The commutation relation of the operator with the adjoint of the other should not be ignored;
otherwise, the operators’ product will not be class Q∗ as seen in example 3.10.

Example 3.10

Let T =

[
1 0
0 2

]
and S =

[
0 1
−1 0

]
be two operators in class Q∗.

T ∗ =

[
1 0
0 2

]
, S∗ =

[
0 −1
1 0

]
.

TS∗ =

[
1 0
0 2

] [
0 −1
1 0

]
=

[
0 −1
2 0

]
̸= S∗T =

[
0 −1
1 0

] [
1 0
0 2

]
=

[
0 −2
1 0

]

T ∗S =

[
1 0
0 2

] [
0 1
−1 0

]
=

[
0 1
−2 0

]
̸= ST ∗ =

[
0 1
−1 0

] [
1 0
0 2

]
=

[
0 2
−1 0

]
Consequently, the product TS /∈ Q∗.

Let M = TS =

[
1 0
0 2

] [
0 1
−1 0

]
=

[
0 1
−2 0

]
M∗ =

[
0 −2
1 0

]

M∗2 =

[
0 −2
1 0

] [
0 −2
1 0

]
=

[
−2 0
0 −2

]

M2 =

[
0 1
−2 0

] [
0 1
−2 0

]
=

[
−2 0
0 −2

]

M∗2M2 =

[
−2 0
0 −2

] [
−2 0
0 −2

]
=

[
4 0
0 4

]

MM∗ =

[
0 1
−2 0

] [
0 −2
1 0

]
=

[
1 0
0 4

]

(MM∗)2 =

[
1 0
0 4

] [
1 0
0 4

]
=

[
1 0
0 16

]
HenceM∗2M2 ̸= (MM∗)2.

The study of direct sum and tensor product of operators in Hilbert spaces has been a topic
of interest for many researchers. [5] proved that the direct sum and tensor product of two

8



operators in SN are in SN . Later, [7] showed that the direct sum and tensor product of two
operators in µ are in µ. [8] showed that if T1, T2, ...Tm are n-power-hypornormal operators in
B(H), then T1 ⊕ T2 ⊕ ...⊕ Tm and T1 ⊗ T2 ⊗ ...⊗ Tm are n-power-hyponormal operators.
Theorem 3.11 gives the results of the direct sum and tensor product of operators in class Q∗.

Theorem 3.11
Let T1, T2, ...Tm be normal operators in class Q∗, Then;

(i) T1 ⊕ T2 ⊕ ...⊕ Tm ∈ Q∗

(ii) T1 ⊗ T2 ⊗ ...⊗ Tm ∈ Q∗

Proof. (i)
(T1 ⊕ T2 ⊕ ...⊕ Tm)

∗2(T1 ⊕ T2 ⊕ ...⊕ Tm)
2

= (T1 ⊕ T2 ⊕ ...⊕ Tm)
∗(T1 ⊕ T2 ⊕ ...⊕ Tm)

∗(T1 ⊕ T2 ⊕ ...⊕ Tm)(T1 ⊕ T2 ⊕ ...⊕ Tm)
= (T ∗

1 ⊕ T ∗
2 ⊕ ...⊕ T ∗

m)(T
∗
1 ⊕ T ∗

2 ⊕ ...⊕ T ∗
m)(T1 ⊕ T2 ⊕ ...⊕ Tm)(T1 ⊕ T2 ⊕ ...⊕ Tm)

= (T ∗
1 ⊕ T ∗

2 ⊕ ...⊕ T ∗
m)(T

∗
1 T1 ⊕ T ∗

2 T2 ⊕ ...⊕ T ∗
mTm)(T1 ⊕ T2 ⊕ ...⊕ Tm)

= (T ∗
1 ⊕ T ∗

2 ⊕ ...⊕ T ∗
m)(T1T

∗
1 ⊕ T2T

∗
2 ⊕ ...⊕ TmT

∗
m)(T1 ⊕ T2 ⊕ ...⊕ Tm)

= (T ∗
1 ⊕ T ∗

2 ⊕ ...⊕ T ∗
m)(T1 ⊕ T2 ⊕ ...⊕ Tm)(T

∗
1 ⊕ T ∗

2 ⊕ ...⊕ T ∗
m)(T1 ⊕ T2 ⊕ ...⊕ Tm)

= (T ∗
1 T1 ⊕ T ∗

2 T2 ⊕ ...⊕ T ∗
mTm)(T

∗
1 T1 ⊕ T ∗

2 T2 ⊕ ...⊕ T ∗
mTm)

= (T1T
∗
1 ⊕ T2T

∗
2 ⊕ ...⊕ TmT

∗
m)(T1T

∗
1 ⊕ T2T

∗
2 ⊕ ...⊕ TmT

∗
m)

= (T1 ⊕ T2 ⊕ ...⊕ Tm)(T
∗
1 ⊕ T ∗

2 ⊕ ...⊕ T ∗
m)(T1 ⊕ T2 ⊕ ...⊕ Tm)(T

∗
1 ⊕ T ∗

2 ⊕ ...⊕ T ∗
m)

= (T1 ⊕ T2 ⊕ ...⊕ Tm)(T
∗
1 T1 ⊕ T ∗

2 T2 ⊕ ...⊕ T ∗
mTm)(T

∗
1 ⊕ T ∗

2 ⊕ ...⊕ T ∗
m)

= (T1 ⊕ T2 ⊕ ...⊕ Tm)(T1T
∗
1 ⊕ T2T

∗
2 ⊕ ...⊕ TmT

∗
m)(T

∗
1 ⊕ T ∗

2 ⊕ ...⊕ T ∗
m)

= (T1 ⊕ T2 ⊕ ...⊕ Tm)(T1 ⊕ T2 ⊕ ...⊕ Tm)(T
∗
1 ⊕ T ∗

2 ⊕ ...⊕ T ∗
m)(T

∗
1 ⊕ T ∗

2 ⊕ ...⊕ T ∗
m)

= (T1 ⊕ T2 ⊕ ...⊕ Tm)
2(T ∗

1 ⊕ T ∗
2 ⊕ ...⊕ T ∗

m)
2

= ((T1 ⊕ T2 ⊕ ...⊕ Tm)(T
∗
1 ⊕ T ∗

2 ⊕ ...⊕ T ∗
m))

2

Now, (T1 ⊕ T2 ⊕ ...⊕ Tm)
∗2(T1 ⊕ T2 ⊕ ...⊕ Tm)

2 = ((T1 ⊕ T2 ⊕ ...⊕ Tm)(T
∗
1 ⊕ T ∗

2 ⊕ ...⊕ T ∗
m))

2

Hence T1 ⊕ T2 ⊕ ...⊕ Tm ∈ Q∗

Proof. (ii)
Let x1, x2, ...xm ∈ H
(T1 ⊗ T2 ⊗ ...⊗ Tm)

∗2(T1 ⊗ T2 ⊗ ...⊗ Tm)
2(x1 ⊗ x2 ⊗ ...⊗ xm)

= (T1⊗T2⊗ ...⊗Tm)
∗(T1⊗T2⊗ ...⊗Tm)

∗(T1⊗T2⊗ ...⊗Tm)(T1⊗T2⊗ ...⊗Tm)(x1⊗x2⊗ ...⊗xm)
= (T ∗

1 ⊗T ∗
2 ⊗ ...⊗T ∗

m)(T
∗
1 ⊗T ∗

2 ⊗ ...⊗T ∗
m)(T1⊗T2⊗ ...⊗Tm)(T1⊗T2⊗ ...⊗Tm)(x1⊗x2⊗ ...⊗xm)

= (T ∗
1 ⊗ T ∗

2 ⊗ ...⊗ T ∗
m)(T

∗
1 T1 ⊗ T ∗

2 T2 ⊗ ...⊗ T ∗
mTm)(T1 ⊗ T2 ⊗ ...⊗ Tm)(x1 ⊗ x2 ⊗ ...⊗ xm)

= (T ∗
1 ⊗ T ∗

2 ⊗ ...⊗ T ∗
m)(T1T

∗
1 ⊗ T2T

∗
2 ⊗ ...⊗ TmT

∗
m)(T1 ⊗ T2 ⊗ ...⊗ Tm)(x1 ⊗ x2 ⊗ ...⊗ xm)

= (T ∗
1 ⊗T ∗

2 ⊗ ...⊗T ∗
m)(T1⊗T2⊗ ...⊗Tm)(T

∗
1 ⊗T ∗

2 ⊗ ...⊗T ∗
m)(T1⊗T2⊗ ...⊗Tm)(x1⊗x2⊗ ...⊗xm)

= (T ∗
1 T1 ⊗ T ∗

2 T2 ⊗ ...⊗ T ∗
mTm)(T

∗
1 T1 ⊗ T ∗

2 T2 ⊗ ...⊗ T ∗
mTm)(x1 ⊗ x2 ⊗ ...⊗ xm)

= (T1T
∗
1 ⊗ T2T

∗
2 ⊗ ...⊗ TmT

∗
m)(T1T

∗
1 ⊗ T2T

∗
2 ⊗ ...⊗ TmT

∗
m)(x1 ⊗ x2 ⊗ ...⊗ xm)

= (T1⊗T2⊗ ...⊗Tm)(T
∗
1 ⊗T ∗

2 ⊗ ...⊗T ∗
m)(T1⊗T2⊗ ...⊗Tm)(T

∗
1 ⊗T ∗

2 ⊗ ...⊗T ∗
m)(x1⊗x2⊗ ...⊗xm)

= (T1 ⊗ T2 ⊗ ...⊗ Tm)(T
∗
1 T1 ⊗ T ∗

2 T2 ⊗ ...⊗ T ∗
mTm)T

∗
1 ⊗ T ∗

2 ⊗ ...⊗ T ∗
m)(x1 ⊗ x2 ⊗ ...⊗ xm)

= (T1 ⊗ T2 ⊗ ...⊗ Tm)(T1T
∗
1 ⊗ T2T

∗
2 ⊗ ...⊗ TmT

∗
m)T

∗
1 ⊗ T ∗

2 ⊗ ...⊗ T ∗
m)(x1 ⊗ x2 ⊗ ...⊗ xm)

= (T1⊗T2⊗ ...⊗Tm)(T1⊗T2⊗ ...⊗Tm)(T
∗
1 ⊗T ∗

2 ⊗ ...⊗T ∗
m)(T

∗
1 ⊗T ∗

2 ⊗ ...⊗T ∗
m)(x1⊗x2⊗ ...⊗xm)

= (T1 ⊗ T2 ⊗ ...⊗ Tm)
2(T ∗

1 ⊗ T ∗
2 ⊗ ...⊗ T ∗

m)
2(x1 ⊗ x2 ⊗ ...⊗ xm)

= ((T1 ⊗ T2 ⊗ ...⊗ Tm)(T
∗
1 ⊗ T ∗

2 ⊗ ...⊗ T ∗
m))

2(x1 ⊗ x2 ⊗ ...⊗ xm)
Therefore T1 ⊗ T2 ⊗ ...⊗ Tm ∈ Q∗

4 Conclusion
This research focused on investigating class Q∗ operators and their properties in Hilbert spaces.
Several properties, including convexity, cartesian decomposition, sum and product and direct
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sum and tensor product have been investigated. Future research plans to explore the spectral
properties of class Q∗ of operators.
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