
 

 
 

Derivation of Continuous Linear Multistep Hybrid Block Method for the 
Solution ofVolterra Integral Equation of Second Kind 

Abstracts 

In this paper, we proposed a continuous linear multistep hybrid block method for the solution of 
Volterra integral equation of second kind of the form(ݔ)ݕ = (ݔ)݂ + ∫ ߮൫ݔ, ௫೙ݏ൯݀(ݏ)ݕ(ݏ

௫బ
, using 

power series and trigonometrically fitted function as the trial solution for the approximation via 
collocation techniques. The proposed hybrid block scheme is found to be consistent, zero-stable 
and convergent. The implementation of the scheme on numerical problems and comparisons of 
results obtained with existing numerical method will be included 

Keywords:Multistep hybrid block method, power series, collocation and interpolation method, 
second kind of Volterra integral equations. 

1. Introduction 

Volterra integral equation is a special kind of integral equation which is classified into three: the 

first, second and third kind. In this research, wedevelop two off - grid points of hybrid block 

method for the solution ofsecond kind of Volterra integral equation due to its characteristics and 

uniqueness. In the literature, the second kind of Volterra integral equation (VIE) according to 

[1]is of the form:	(ݔ)ݕ = (ݔ)݂ + ∫ ߮൫ݔ, ௫೙ݏ൯݀(ݏ)ݕ(ݏ
௫బ

   (1) 

Where ݂(ݔ)  is a given function and ߮(ݔ,  is called the kernel of integral equation.Volterra(ݏ

integral equation (VIE) appears especially when we try to transform an initial value problem into 

integral form, so that, the solution of the equation can be easily obtained than the original initial 

value problem [2].Solving (1) is equivalent to solving the following initial value problem for 

ordinary differential equations of the first order 

(ݔ)ᇱݕ = ݂ᇱ(ݔ) + ߮൫(ݔ)ݕ,ݔ൯, (଴ݔ)ݕ =         (2)     (଴ݔ)݂

The Volterra Integral Equations are widely used in population growth models, physics, 

chemistry, and engineering [3]. Particularly important in science and engineering are systems of 

linear integral equations and their precise or approximate solutions. In the domains of 

engineering and applied research, some of these integral equations cannot be solved explicitly, 

hence approximation or numerical methods must frequently be used [4]. In recent years, many 



 

 
 

strategies for resolving Volterra integral equations are suggested by many researchers such as: 

[5], [6], [7], [8], and much recently by [9], [10], [11], [12], [13],[14] and [15] respectively. 

         

2.Derivation of the proposed method 

In this section, we derive three step with two off-grid points ofhybrid block method for the 

integration of Volterra integral equation of second kind by carefully selecting 
3
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p and
3
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q

for ݌, 	ݍ ∈ 	 [0,1] 

Let the approximate series solution and trigonometrically fitted function of the Eq. (1) takes the 

form of   
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Where ∅௝and ߣ௝are the coefficients to be determined. 

Consider the ordinary differential equation 
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Subject to the condition 
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The second derivative of Eq. (3) is given as; 
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Substituting Eq. (4) into (1) gives 
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                 Interpolating (3) at  1,0,  nx  and collocating (6) at  }3,2,1,
3
2,

3
1,0{,  nx  leads to the 

system of nonlinear equations written in the form  
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Using the Gaussian elimination method to solve  Eq. (8) gives the coefficients  
321

3
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3
1010 ,,,,,,,  ,which are then substituted into (3) and simplified to give the implicit 

second derivative hybrid block method of the form;  
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Differentiating equation (9) to give: 
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Where 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

Evaluating Eq. (9) at non-interpolating points  
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Evaluating Eq.(9) at all points, to obtain  
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This gives the following equation in matrix form                                                                             

(13) 

(14)  

Substituting Eq.(14) into Eq. (13) and multiply by the inverse of 1A  gives the hybrid block in the 
form: 
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By putting Eq. (5) in Eq. (15) yield the proposed hybrid blockschemes of the form:
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3.Analysis of the Hybrid Block Method 

In this section, the analysis of the order, error constant, convergence and stability 

ofproposedschemeis carried out. 

3.1.Order and error constant of the proposed method 

Let the linear difference operator ℓ associated with the new method (16) be defined as 

[(ℎ;ݔ)ݕ]ܮ = ∑ ݔ)ݕ௝ߙ + ݆ℎ)− ℎଶ∑ ݔ)′′ݕ௝ߚ) + ݆ℎ))௞
௝ୀ଴

௞
௝ୀ଴         (17) 

 Where(ݔ)ݕ	is an arbitrary test function continuously differential on [a, b] Expanding ݔ)ݕ +

݆ℎ),ݔ)′ݕ + ݆ℎand ݔ)′′ݕ + ݆ℎof (16) in Taylor series in the form: 



 

 
 

       

       

         

         

         

       

       

         

         

          




















































































































































































































































































































































































































































































3
320

93
2

160

261
1

80

153

3

2

160

729

3

1

160

729

80

57

0
2

1

!0 !

3

3
140

1
2

3

1
1

15

29

3

2

35

54

3

1

20

27

15

1

0
2

1

!0 !

2

3
6720

1
2

480

1
1

240

37

3

2

1120

351

3

1

64

27

80

9

0
2

1

!0 !

1

3
14580

1
2

1215

1
1

125

13

3

2

45

4

3

1

180

83

3645

389

0
2

1

!0 !

3

2

3
1632960

211
2

7776

13
1

19440

709

3

2

10080

1177

3

1

2880

863

58320

6737

0
2

1

!0 !

3

1

3
3136

195
2

660

621
1

560

783

3

2

3920

2187

3

1

2240

2187

280

111

0
2

2

!

'3
0 !

3

3
4410

11
2

210

17
1

105

118

3

2

490

243

3

1

70

81

315

43

0
2

2

!
'2

0 !

2

3
141120

13
2

840

1
1

336

11

3

2

1960

81

3

1

2240

729

315

32

0
2

2

!

'
0 !

3
1071630

61
2

51030

37
1

25515

374

3

2

882

31

3

1

1890

337

76545

4981

0
2

2

!
'

3

2

0 !

3

2

3
3429460

829
2

408240

127
1

408240

2719

3

2

1058040

2203

3

1

6720

281

612360

1725

0
2

2

!
'

3

1

0 !

3

1

j
j
ng

j

j

h
nz

j
nz

j j

j

j
j
ng

j

j

h
nz

j
nz

j j

j

j
j
ng

j

j

h
nz

j
nz

j j

j

j
j
ng

j

j

h
nz

j
nz

j j

j

j
j
ng

j

j

h
nz

j
nz

j j

j

j
j
ng

j

j

h
nhznz

j
nz

j j

j
h

j
j
ng

j

j

h
nhznz

j
nz

j j

j
h

j
j
ng

j

j

h
nhznz

j
nz

j j

j
h

j
j
ng

j

j

h
nhznz

j
nz

j j

j
h

j
j
ng

j

j

h
nhznz

j
nz

j j

j
h

              (18) 

If we assume that (ݔ)ݕ has many higher derivatives and collecting the terms, we have: 

	ℓ[(ݔ)ݕ;ℎ] = ܿ଴̅(ݔ)ݕ + ܿଵ̅ℎݕᇱ(ݔ) + ܿଶ̅ℎଶݕᇱᇱ(ݔ) + ⋯+ ܿ௣̅ାଶℎ௣ାଶݕ(௣ାଶ)(ݔ)   (19) 

According to [11], the proposed scheme has order ݌if,ܿ଴̅ = ܿଵ̅ = ܿଶ̅ୀ … = ܿ௣̅ାଵ = 0, ܿ௣̅ାଶ ≠ 0 

The proposed method is of order	݌ = ⌈7,7,7, 7,7, 7,7, 7,7, 7⌉், with error constant 
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3.2. Consistency of the method 

According to Areo and Omojola (2015), the hybrid block method is said to be consistent if it has 

an order more than or equal to onei.e.(݌ ≥ 1). Since the Eq. (16) is of order݌ = 7, therefore, the 

proposed hybrid block method is consistent 

2.3. Zero-stability of the proposed method 

The linear multistep hybrid block method is said to be zero-stable as ℎ → 0, if the roots of the 

first characteristics polynomial defined by(ݖ)ߩ = ∑ൣݐ݁݀ ௞(௄ି௜)ܼ(௜)ܣ
௝ୀ௢ ൧ satisfies  |ݖ| ≤ 1 and 

every root of|ݖ| = 1 has multiplicity not exceeding the order of the differential equation. 

Awoyemiet.al. (2011) 
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We have(ݖ)ߩ = ݖ)଼ݖ − 1) = 0, ݖ = 0.0.0.0.0.0.0,0,1 

Since|ݖ| = 1, therefore. The proposed method is zero-stable  



 

 
 

2.4. Convergence of the proposed methodThe necessary and sufficient condition for a linear 
multistep hybrid block method to be convergent is to be consistent and zero stable. Since, our 
scheme satisfies the two conditions, hence the Eq. (9) is convergent. 

4. Implementation of method        In this 

section, we implement the proposed hybrid block method on two considered problems of second 

kind VIEs. 

Problem 4.1 

Consider the second kind linear volterra integral equation  

(ݐ)ܺ = ଶݐ + ∫ ݐ) − ௫ݏ݀(ݏ)ଵݔ(ݏ
଴      

With exact solutionܺ(ݐ) = ݐℎݏ݋2ܿ − 2, ℎ = 0.1 

Source:Muturiet al. (2014) 

Converting the nonlinear VIE to a second order ODE, we obtained     (ݐ)ݔ =

ଶݐ + ∫ ݐ) − ௧(ݏ
଴ (ݐ)ᇱݔ         ݏ݀(ݏ)ଵݔ = ݐ2 +

∫ ௧(ݏ)ଵݔ
଴ (ݐ)ᇱᇱݔ        ݏ݀ = 2 +  (ݏ)ଵݔ

Then, the second order ODE is given as      ݖᇱᇱ = ଴ᇱݖ0 + ଴ݖ + 2 

Whereݖ଴ = 0, ᇱݖ = 0. 

 

 

 

 

 

Table .1 the exact solution and computed results from the propose methods for problem 1 

X  Exact Numerical Result Error in Muturiet Error in Proposed 



 

 
 

al. (2014) Method  

0.1 0.01000833611160719800 0.01001667222375875757 1.0 E-05           2.7763 E-13 

0.2 0.04013351123815169260 0.04013351123459477332  3.0 E-05  3.5569 E-12 

0.3 0.09067702825772097000 0.09067702827425125113  8.0 E-05  1.6530 E-11 

0.4 0.16214474367690961860 0.16214474375907952666  1.40 E-04 8.2169 E-11 

0.5 0.25525193041276157040 0.25525193055694029498 2.20 E-04 1.4417 E-10 

0.6 0.37093043648453540760 0.37093043671821427031  3.20 E-04 2.33678 E-10 

0.7 0.51033801126188603640 0.51033801163676863682 4.40 E-04 3.74882 E-10 

0.8 0.67486989260968919600 0.67486989312433225989 5.90E-04 5.14643 E-10 

0.9 0.86617277089754877560 0.86617277158760432182 7.70E-04 6.9005 E-10 

1.0 1.08616126963048755700 1.08616127056068089180  9.80 E-04 9.3019 E-10 

 

Problem 2          Consider the 
second kind linear volterra integral equation  

(ݔ)ܷ = 1 + ݔ + ∫ ݔ) − ௫ݐ݀(ݐ)ܷ(ݐ
଴         With 

exact solution: 

(ݔ)ܷ = ݁௫ , ℎ = 0.1 

Source:Shoukralla and Ahmed (2020)      Converting the 

VIE to a second order ODE, we obtained     1(ݔ)ݑ + ݔ +

∫ ݔ) − ௫(ݐ
଴  ݐ݀(ݐ)ݑ

(ݔ)ᇱݑ	 = 1 + ∫ ௫(ݐ)ݑ
଴ (ݔ)ᇱᇱݑݐ݀ = ᇱᇱݖThe second order ODE is then given as , (ݔ)ݑ = ᇱݖ0 +   ݖ

        whereݖ଴ = 0, ᇱݖ = 0.Table 2 the 

exact solution and computed results from the propose methods for problem 2 



 

 
 

X  Exact Numerical Result Error in Shoukralla 
and Ahmed (2020) 

Error in Proposed 
Method  

0.1 1.1051709180756476248 1.10517091807580048840 1.4089 E-09 1.5286 E-13        

0.2 1.2214027581601698339 1.22140275815817059020 9.1493 E-08 1.9992 E-12 

0.3 1.3498588075760031040 1.34985880758546021050 1.0576  E-05 9.4571 E-12 

0.4 1.4918246976412703178 1.49182469768812457810 6.0309 E-06 4.6854 E-11 

0.5 1.6487212707001281468 1.64872127078173504370 2.3354 E-05 8.1607 E-11 

0.6 1.8221188003905089749 1.82211880052608176310 7.08004 E-05 1.3557 E-10 

0.7 2.0137527074704765216 2.01375270769626071760 1.8129E-04 2.2578 E-10 

0.8 2.2255409284924676046 2.22554092880652021370 4.1026 E-04 3.1405 E-10 

0.9 2.4596031111569496638 2.45960311158724651560 8.4486 E-04 4.3029 E-10 

1.0 2.7182818284590452354 2.69286592330700708760 1.6151 E-03 2.5416 E-02 

 

Discussion and Conclusion 

In this research, Continuous Linear Multistep Hybrid Block Method was proposedfor the 

solution of integral equation of second kind. We investigated the property of this proposed 

method in terms of order, error constant, consistency, zero-stability and convergence analysis. 

The scheme was also used to solve numerically two problems of volterra integral equation of 

second kind and the results were compared with[9] and [10].From the Table 1 and 2, we 

discovered that, the proposed multistep hybrid block method were capable of 

Handling the second kind VIEs. The results obtained from Table 1 and 2 indicated that our 

proposed methodsare considerably much more accurate than the existing numerical methods. All 

computation and program were carried out with the aid of MAPPLE 15software. 
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