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NUMERICAL SOLUTIONS FOR CHEMOTAXIS SYSTEMS USING STOCHASTIC 
FRACTIONAL CALCULUS MODELS 

 
 
Abstract 
This paper addresses the numerical solutions of fractional differential equations (FDEs) using the 
Generalized Kudryashov Method (GKM) in the context of the conformable fractional derivative. 
Fractional calculus, particularly the conformable derivative, provides a versatile framework for modeling 
systems exhibiting memory and hereditary properties commonly found in complex physical phenomena. 
Traditional integer-order derivatives lack the capability to accurately represent such dynamics, which 
fractional derivatives effectively handle. The conformable derivative, a recent addition to fractional 
calculus, retains many advantageous properties of integer-order differentiation, such as the chain rule, 
while extending to non-integer orders. The Generalized Kudryashov Method, initially developed for 
solving nonlinear ordinary differential equations, is adapted here to address nonlinear FDEs involving 
conformable derivatives. By employing a traveling wave transformation, the study converts fractional 
partial differential equations into ordinary differential equations, facilitating the application of GKM. 
Through this approach, the study derives numerical solutions, demonstrating the method’s ability to 
capture complex dynamics in nonlinear fractional systems. The results indicate that GKM, in conjunction 
with the conformable derivative, offers a robust tool for accurately approximating solutions of FDEs, 
with potential applications across fields such as fluid mechanics, quantum mechanics, and anomalous 
diffusion(Anomalous diffusion refers to a type of diffusion process that deviates from classical, or 
"normal," diffusion as described by Brownian motion and Fick's laws. In normal diffusion, particles 
spread out over time in a predictable, linear manner, where the mean squared displacement (MSD) of 
particles scales) 
. 
Keywords: fractional conformable derivative, generalized Kudryashov method, numerical 
solutions, fractional differential equations, nonlinear systems 
 
Introduction 

Fractional calculus generalize the concept of integer order differentiation and integration 
to non-integer order as 1/2, 3/2, 2.5, etc, and is very useful to modeling practical problems that 
involve memory and hereditary effects. Such systems cannot be well described by conventional 
integer-order derivatives, especially when the system exhibits oscillatory behavior. The 
conformable derivative which was recently defined is a more elementary form of applying 
fractional calculus and retains some of the basic features of the integer order derivatives while 
possessing the fractional nature. Therefore, it has been applied in different fields such as physics, 
engineering as well as biology. 

Fractional calculus is just a generalization of the traditional calculus where differentiation 
and integration can be performed on non-integer order; this allows one to get powerful 
machinery for modelling of many intricate physical and engineering systems. There is substantial 
evidence of the usefulness of fractional derivatives in areas of viscoelasticity, diffusion, control 
theory, and quantum mechanics where classical integer-order models are insufficient to model 
anomalous behaviors. In most engineering problems, if we consider local variations or 
perturbations in a system, conventional derivatives suffice, but if one has to model long-term 
memory and hereditary effects, then fractional derivatives are more appropriate due to their time 
and space variation features. Several definitions of fractional derivatives exist; however, the 
conformable fractional derivative (CFD) has recently attracted attention because of its simplicity 
and compatibility with traditional calculus. 
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In this study we consider the numerical solutions of the FDEs having incorporated the 
conformable fractional derivative as well as by using the methods of GKM. This method, 
employed to make exact analytical/numerical solutions to a number of non-linear differential 
equations, has been further used to seek the exact solutions of the following PDEs, nonlinear 
Schrödinger, Korteweg-de Vries equations accompanied by other evolutionary equations. The 
conformable fractional derivatives have been used to combine with the Kudryashov method to 
overcome the difficulties brought by the fractional orders of the differential equations. 
 
Objectives of the Study: 
The primary objectives of this study are to: 

1. Develop numerical solutions for fractional differential equations (FDEs) using the 
Generalized Kudryashov Method (GKM) within the framework of conformable fractional 
derivatives. 

2. Address limitations in traditional integer-order derivatives, which are less effective at 
modeling complex dynamics, by adapting GKM to nonlinear fractional differential 
equations. 

3. Demonstrate the efficacy of the conformable derivative in capturing memory and 
hereditary properties in systems commonly seen in fields like fluid mechanics, quantum 
mechanics, and anomalous diffusion. 

4. Expand the application scope of the Kudryashov Method to handle fractional 
conformable derivatives, enhancing its robustness in solving nonlinear FDEs. 

 
Significance of the Study: 
This study is significant because it: 

 Provides an advanced numerical approach for modeling complex systems that exhibit 
memory-dependent behaviors, which traditional calculus often fails to represent. 

 Applies the recent concept of conformable derivatives, which retain key properties of 
integer-order derivatives while extending to fractional orders, making them versatile for 
mathematical modeling. 

 Demonstrates the utility of the Generalized Kudryashov Method in accurately solving 
complex FDEs, making it applicable in physics, engineering, and other fields with 
nonlinear and fractional dynamics. 

 Opens avenues for further research and applications in scientific fields where accurate 
modeling of anomalous diffusion and hereditary processes is critical, potentially 
impacting computational methods in diverse domains. 

 
 
 
 
Conformable Fractional Derivative 
The conformable fractional derivative, introduced by Khalil et al. (2014), presents a modification 
to the standard definitions of fractional derivatives, offering a framework that maintains certain 
desired properties of integer-order derivatives, such as the chain rule and the Leibniz rule for 
products. For a function ݂:	 ⟶ and a fractional order	0 < ߙ ≤ 1, the conformable fractional 
derivative of ݂ܽݐݐis defined by: 
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(ݐ)α݂ܦ = 	 lim௘→଴
௙൫௧ାఢ௧భషα൯ି௙(௧)

ఢ
                                                    (1) 

 
or, equivalently, for differentiable functions, 
 

(ݐ)α݂ܦ = 	 ଵିα݂ݐ  (2)                                                     (ݐ)′
 
This derivative provides a natural extension of the traditional first derivative as α→1 and reduces 
to the identity operator when α = 0. 
 
While the literature on analytical methods for solving fractional differential equations (FDEs) is 
extensive, fewer studies address numerical methods capable of solving FDEs involving 
conformable derivatives. The Kudryashov method, initially proposed for exact solutions of 
nonlinear ordinary differential equations (ODEs), shows promise in solving nonlinear FDEs by 
transforming them into simpler forms. This study aims to extend the Kudryashov method to 
handle conformable derivatives, enabling the numerical approximation of solutions for complex 
fractional systems. 
 
Literature Review 

The conformable derivative has been one of the exciting topics of interest since its 
introduction aimed at presenting a natural way of defining the fractional derivatives. Research 
has been directed towards the characterization of conformable derivatives’ properties as well as 
their use. For example, Khalil et al. (2014) and introduced the preliminary theory of conformable 
derivatives that showed the effectiveness of such approach for description of the processes 
having the memory. In more recent years, the conformable derivatives have been used in 
fractional models in different fields topics which includes viscoelastic, thermal conductivity for 
example Abdeljawad, 2015 and Zhao et al., 2019 among others. 

With regards to solution methods, a number of analytical and numerical techniques have 
been employed on fractional differential equations among them are Adomian decomposition, 
homotopy perturbation and variational iteration. However, nonlinear portions of fractional 
systems or the fractional systems in general, pose certain challenges and may need quite specific 
methods. The Kudryashov method has a recent version implemented for polynomial-type 
nonlinear ODEs and adaptations have been developed for fractional and conformable derivatives 
by Kudryashov (1988) and Zhang, Baleanu, and Machado (2021). While these adaptations show 
potential, they have not been able to exhaustively solve the conformable derivative cases in the 
general statements and this informed the need for the present work scouting for a generalized 
model. 

Stochastic fractional models have become crucial in understanding chemotaxis, 
especially in capturing the randomness and hereditary aspects of cell movement towards 
chemical signals. In biological systems, cells' responses are often influenced by various factors 
that result in stochasticity, making fractional models with stochastic components well-suited for 
these studies. A study by Baeumer et al. (2001) introduced a stochastic fractional model to 
represent cell migration in response to chemotactic signals, integrating fractional derivatives to 
account for the memory effects of cells’ past velocities. The fractional approach demonstrated 
that chemotactic drift is better captured with fractional stochastic terms, revealing more accurate 
trajectories of cell movement compared to integer-order models. This approach has implications 
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in understanding cell signaling in tumor growth and immune responses, where randomness plays 
a significant role (Baeumer et al., 2001). 

Chemotaxis models using fractional derivatives have been instrumental in simulating 
tumor cell movement towards higher concentrations of growth factors. Additive and 
multiplicative noise components are integrated into these models to better reflect the randomness 
in cell-environment interactions. Xu et al. (2017) developed a fractional stochastic chemotaxis 
model that combines anomalous diffusion with stochastic terms, effectively modeling the erratic 
migration patterns of cells. By employing a Caputo fractional derivative, the study captured both 
subdiffusive and superdiffusive behaviors in chemotaxis, offering new insights into tumor cell 
dynamics where fractional orders were varied to simulate different levels of cellular 
responsiveness and environmental heterogeneity. This model provides a foundation for more 
complex simulations involving chemotactic movement under uncertain conditions in a 
heterogeneous environment. 

Stochastic fractional differential equations (SFDEs) have increasingly been applied to 
chemotaxis studies to model how environmental noise influences cell migration. In recent 
research, fractional derivatives have been coupled with stochastic terms to simulate chemotaxis 
under fluctuating chemical gradients. In their work, Liu and Xu (2019) utilized SFDEs to model 
chemotactic cell motion under environmental uncertainty, employing a Lévy noise component to 
simulate jumps in response to sporadic shifts in chemical concentration. Their findings reveal 
that fractional-order models with stochastic effects outperform traditional models by accounting 
for the memory-dependent nature of cell movement, providing a realistic approach to simulate 
cells’ navigation through complex microenvironments. This model is especially relevant in 
microbial chemotaxis and biofilm formation, where environmental randomness significantly 
influences collective cell behavior. 
 
Definition of Fractional Derivatives 

A fractional derivative generalizes the concept of differentiation to non-integer orders. 
Unlike standard derivatives (which represent rates of change at integer orders, such as first or 
second derivatives), fractional derivatives allow for differentiation at fractional orders, such as 
ଵ
ଶ
 which can model more complex behaviors such as memory effects, nonlocality, and ,1.5	ݎ݋

anomalous diffusion. 
Fractional derivatives are defined in several ways, with the most common definitions 

being the Riemann-Liouville, Caputo, and Grunwald-Letnikov fractional derivatives. These 
provide different ways to calculate the fractional derivative of a function. 
 

(ݐ)௧α݂ܦ = 	 ଵ
୻(ଵି஑)

ௗ
ௗ௧ ∫

௙(த)
(௧ିத)ഀ

݀τ௧
଴                                                     (3) 

 
where Γis the Gamma function, which generalizes the factorial function. This derivative is 
particularly useful in physical systems that exhibit memory effects, such as those encountered in 
diffusion processes and chemotaxis, where past states influence the future behavior. 

Fractional derivatives introduce memory into the system, meaning that the behavior of 
the system at time t depends not only on the immediate past but also on a broader history of past 
states. For instance, in chemotaxis, this could mean that the movement of cells is influenced by 
both the current concentration of chemicals and the cell’s history of exposure to those chemicals. 
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This ability to model memory makes fractional calculus especially useful in fields like biology, 
physics, and engineering, where systems often display nonlocal and history-dependent behavior. 
 
Grunwald-Letnikov Approximation 

This is one of the simplest ways to numerically compute fractional derivatives. It 
provides a discrete approximation of the fractional derivative and is particularly useful for 
computational simulations. It’s derived from the idea of replacing continuous fractional 
derivatives with finite differences, similar to how integer derivatives are approximated with 
finite difference schemes. 
 
Grunwald-Letnikov Approximation for a Fractional Derivative: 
The Grunwald-Letnikov approximation of a fractional derivative of order αis given by: 
 

(ݐ)௧α݂ܦ ≈ ଵ
ഀ∑ (−1)௞൫ఈ௞൯݂(ݐ − ݇ )௡

௞ୀ଴                                                     (4) 
where: 

 his the step size (the time or space interval), 
 ൫ఈ௞൯ is the generalized binomial coefficient, which is computed as: 

 
൫ఈ௞൯ = 	 ୻(஑ାଵ)

୻(୩ାଵ)୻(஑ି୩)
                                                    (5) 

 
 
In chemotaxis models, where random noise and memory effects are significant, the Grunwald-
Letnikov approximation can be used to numerically solve fractional differential equations 
(FDEs) that govern the chemotactic motion of cells. By discretizing time and space, it allows 
researchers to simulate how cells move towards chemical signals, incorporating both the 
stochastic nature of the environment and the memory effects in the cells’ movement. 
 
Fractional Stochastic Models in Chemotaxis: 
In the context of stochastic fractional models in chemotaxis, fractional derivatives are combined 
with stochastic processes to model the inherent randomness in biological systems. For example, 
the chemotactic movement of cells can be influenced by fluctuating concentrations of chemical 
signals, random variations in the environment, and other noise factors. Stochastic processes like 
Levy processes or Wiener processes (which represent random walks) are often used to model 
these random effects. 
 
Incorporating fractional derivatives and stochastic processes into chemotaxis models allows for a 
more accurate and realistic representation of biological systems, where randomness and memory 
effects are prevalent. The Grunwald-Letnikov approximation provides an efficient numerical 
method for solving these models, enabling simulations of complex systems that would be 
difficult to analyze using traditional methods. These mathematical tools are essential for studying 
the dynamics of cells under fluctuating environmental conditions, with applications in fields such 
as cancer research, immunology, and microbial behavior. 
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The finite difference method (FDM)andGrunwald-Letnikov approximation are effective 
numerical tools used in the study to approximate fractional derivatives and solve fractional 
differential equations within chemotaxis models. The finite difference method discretizes 
differential equations by replacing continuous derivatives with difference quotients, making it 
widely applicable for approximating both integer-order and fractional-order derivatives. Its 
simplicity and ease of implementation make it well-suited for modeling diffusion and transport 
phenomena in biological systems. Similarly, the Grunwald-Letnikov approximation provides a 
convenient way to approximate fractional derivatives by expressing them as weighted sums of 
past function values, allowing for the incorporation of memory effects crucial for modeling 
processes with nonlocal dependencies. 

However, both methods come with limitations that could impact the accuracy and 
efficiency of the chemotaxis model. The finite difference method, while versatile, often requires 
fine discretization to achieve high accuracy, which can increase computational cost and 
complexity. In fractional models, the need for small step sizes can be particularly demanding 
since long memory effects imply that past values significantly influence the solution, 
necessitating large storage requirements and longer computation times. 

The Grunwald-Letnikov approximation, while effective for fractional derivatives, may 
also introduce stability issues in certain cases, especially for long-term simulations. As the 
fractional order approaches zero, the approximation can become unstable or inaccurate, 
potentially necessitating alternative approaches for very low fractional orders or more 
sophisticated techniques like adaptive time-stepping or implicit methods to maintain stability. 
 
Definition of terms 
Fractional Order Parameter α: 
In fractional chemotaxis models, the parameter α represents the order of the fractional derivative. 
This parameter, usually between 0 and 1, reflects the degree of memory or history dependence in 
the system. Specifically, α controls the weight of the past states of the system on its current 
behavior. 
 
Biological Relevance: 
In biological systems, cell migration and movement are often influenced by previous encounters 
with chemical signals, especially in complex micro environments where cells might follow 
“memory” of where signals were previously stronger. For example: 

 In immune responses, white blood cells may move toward an infection site by following 
chemical signals. A fractional derivative with an order α close to 1 would mean the cells 
primarily respond to recent chemical concentrations, while a lower α value (say, around 
0.5) would imply they rely more heavily on a longer history of concentrations. 

 In tumor cell migration, a lower α might indicate that the cells’ movement is more 
influenced by long-term exposure to growth factors, creating a persistent bias toward 
certain directions. 

Overall, α allows the model to reflect how “memory” influences cell motility, with smaller 
values emphasizing longer memory effects and larger values focusing more on recent signals. 
 
Chemotactic Sensitivity χ: 
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The parameter χ represents chemotactic sensitivity, indicating the strength of the cell's response 
to a chemical gradient. It is a key factor in determining how strongly cells move toward areas of 
higher chemical concentration (the chemotactic source). 
 
Biological Relevance: 
Chemotactic sensitivity is essential in defining how responsive a cell type is to certain chemical 
cues, which varies greatly among different cell types and biological processes: 

 High chemotactic sensitivity (χ large): Cells such as certain immune cells (e.g., 
neutrophils) have a strong response to gradients of chemokines released at infection sites. 
High χ values mean that cells quickly move toward higher concentrations of the 
chemical, reflecting strong chemotactic behavior. 

 Low chemotactic sensitivity (χ small): Cells with lower sensitivity, like some cancer 
cells under low chemokine levels, may exhibit more meandering or diffuse movement 
even when gradients are present. This low χ reflects weaker chemotactic attraction, 
possibly indicating that the cell is influenced by other factors beyond chemotactic cues. 

In chemotaxis models, adjusting χ allows researchers to simulate and analyze how different cell 
types respond to varying chemical signal intensities, which is crucial for accurately modeling 
immune responses, wound healing, or metastasis. 
 
Stochastic Noise Intensity σ: 
The parameter σ often represents the intensity of stochastic noise in the chemotaxis model. This 
noise term accounts for random fluctuations in the cells’ movement due to environmental 
variability or intrinsic randomness in cellular behavior. 
Biological Relevance: 
Noise is inherent in biological systems and can arise from variability in cellular processes (e.g., 
protein expression, receptor binding) or from the surrounding microenvironment: 

 High noise intensity (σ large): High σ values model situations where cells experience 
significant environmental randomness. For instance, in dense tissue or complex 
extracellular matrices, the pathways for cell migration may be obstructed, causing cells to 
deviate from an ideal chemotactic path. 

 Low noise intensity (σ small): Lower σ values indicate more predictable or directed 
movement. Cells moving within a structured environment, like endothelial cells lining 
blood vessels in relatively stable conditions, might exhibit low noise, resulting in less 
deviation from chemotactic signals. 

The parameter σ enables the model to account for how environmental complexity and biological 
variability influence cell behavior. For example, in cancer, tumor cells may encounter various 
mechanical obstacles that lead to higher random movement, while in immune responses, cells 
might encounter more uniform environments, resulting in lower noise. 
 
Summary of Biological Implications: 

 α controls how past signals influence current movement, crucial in memory-dependent 
responses. 

 χ determines sensitivity to chemical gradients, impacting the directedness of cell 
movement in response to chemotactic signals. 

 σ models the randomness or noise in cell movement, capturing environmental variability 
or cellular stochasticity. 
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By tuning these parameters, researchers can simulate the nuanced behaviors of cells in response 
to chemotactic signals under different biological conditions, allowing for more realistic and 
predictive models in fields such as immunology, cancer research, and tissue engineering. 
 

The paper integrates stochastic elements to capture the inherent randomness in cell 
migration within chemotaxis models. While the stochastic approach acknowledges the 
environmental and biological variability that cells encounter, a clearer justification for the 
selection of specific stochastic processes, such as Wiener processes, would enhance the 
methodology's rigor. Including a rationale for choosing particular processes could clarify how 
they align with biological phenomena in chemotaxis. 

For example, Wiener processes are commonly used in chemotaxis models to represent 
Brownian motion, which approximates the random walk-like behavior observed in cellular 
migration. This process is well-suited to model the small, random perturbations in a cell's path, 
reflecting natural fluctuations due to biochemical noise or microenvironmental heterogeneity. 
However, other types of stochastic processes, such as Levy flights, could be considered when 
cells exhibit longer, anomalous jumps a behavior sometimes seen in immune cells or invasive 
cancer cells that shift direction abruptly or travel longer distances in response to chemotactic 
signals. 

By addressing the biological motivations behind using Wiener processes (or possibly 
exploring alternative processes like Levy processes), the study could offer a more thorough 
connection between the chosen stochastic framework and the observed migratory behaviors. This 
would underscore the model’s alignment with realistic biological mechanisms and provide 
clearer insights into how stochastic modeling choices influence chemotactic predictions. 
 
Materials and Methods 
Generalized Kudryashov Method 
In domains such as fluid mechanics, plasma physics, and nonlinear optics, the Generalized 
Kudryashov Method is a potent analytical tool for obtaining precise solutions to nonlinear 
differential equations, especially those that describe soliton and traveling wave solutions. By 
permitting more general forms of the solution and expanding the set of differential equations that 
can be used, this approach improves upon the traditional Kudryashov method. Let's review the 
overall framework, including equations and mathematical specifics. 
 
Formulation of the Problem 
Consider a nonlinear partial differential equation (PDE) of the form: 
 

,ݑ)ܲ ௫ݑ,௧ݑ , ௫௫ݑ ,௫௧ݑ, … ) = 0                                                     (6) 
 
where ݑ = ,ݔ)  and ܲrepresents a ݐ and timeݔ is an unknown function of the spatial variable(ݐ
nonlinear function involving ݑand its partial derivatives. 
 
To simplify the problem, we often seek traveling wave solutions of the form: 
 

,ݔ)ݑ (ݐ = 	ܷ(ξ),	 where ξ = ݔ −  (7)   ݐܿ
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with c being the wave speed. By substituting this transformation, we convert the PDE into an 
ordinary differential equation (ODE) for U(ξ). 
 
Converting the PDE to an ODE 
The traveling wave transformation ݔ)ݑ, (ݐ = 	ܷ(ξ)simplifies the derivatives as follows: 
 

ௗ௨
ௗ௧

= 	−ܷܿ′, ௗ௨
ௗ௫

= ܷ′	, ௗ
మ௨

ௗ௫మ
= ܷ′′                                                    (8) 

 
Substitute these into the original PDE to obtain an ODE for U(ξ) 
 

ܳ ቀܷ,ܷ′,ܷ′ ′, … ቁ = 	0                                                    (9) 
 
where Q represents a nonlinear function involving U and its derivatives. 
 
Assuming the Solution Form in the Generalized Kudryashov Method 
In the Generalized Kudryashov Method, we assume that the solution U(ξ) can be expressed as a 
rational function of a new variable ϕ(ξ), where ϕ(ξ) satisfies a simple auxiliary ODE. One 
commonly used form is: 
 

U(ξ) = 	 ∑ ௔೔థ೔(ξ)ొ
೔సబ

∑ ௕ೕథೕ(ξ)ొ
೔సబ

                                                    (10) 

 
where ܽ௜and ௜ܾ are constants to be determined, and Nand M are non-negative integers that 
determine the order of the numerator and denominator, respectively. 
 
Choosing an Auxiliary Equation for ϕ(ξ) 
A common choice for ϕ(ξ) is a function that satisfies an auxiliary ODE, such as: 
 

߶′(ξ) = 	λ߶(ξ)(1 − ߶(ξ))                                                    (11) 
 
Or 
 

߶′′(ξ) = 	݇߶(ξ) +  ଶ(ξ)                                                    (12)߶ߤ	
 
where λ, ݇ and µ are parameters to be determined. These choices are useful because they yield 
polynomial solutions or solutions involving hyperbolic or trigonometric functions, depending on 
the parameter values. 
 
Determining the Parameters and Constants 
The next step is to substitute the assumed form of U(ξ) into the ODE obtained in Step 2. This 
process involves: 

1. Differentiating U(ξ) with respect to ξ, as required. 
2. Plugging U(ξ), U'(ξ), U′′(ξ), etc., into the ODE. 
3. Setting up a system of algebraic equations for the parameters ܽ௜, ௝ܾ , ܿ, λ,  etc., by,ߤ,݇

equating coefficients of like powers of ϕ(ξ) to zero. 
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Solving this algebraic system yields the values of the parameters, which in turn provides the 
explicit form of U(ξ) and hence the solution ݔ)ݑ,  .(ݐ
 
Generalized Kudryashov Method for Fractional Conformable Derivative 
Generalized Kudryashov Method for Fractional Conformable Derivatives simply offers an 
adaptation of the Kudryashov method for use in the fight against fractional differential equations. 
Conformable fractional derivatives are a form of fractional derivatives that obey some general 
properties of integer order derivatives, for example product and chain rule that makes them 
appropriate for analytical applications. 
 
Problem Formulation with Fractional Conformable Derivative 
Consider a nonlinear fractional partial differential equation (PDE) involving a conformable 
fractional derivative, which we express as: 
 

ܲቀܦ,ݑ௧ఈܦ,ݑ௫
ఉܦ,ݑ௫௫

ఉ ,ݑ … ቁ = 0                                                    (13) 
 
where ݑ = ,ݔ)  ௧ఈandܦand ,ݐ	݀݊ܽ	ݔ is the unknown function of spatial and temporal variables (ݐ
௫ܦ
ఉ  represent the conformable fractional derivatives with respect totand x of orders αand β, 

respectively. 
 
The Conformable Fractional Derivative 
For a function ݂(ݐ)the conformable fractional derivative of order α(where 0<α≤1) is defined as: 
 

(ݐ)α݂ܦ = 	 lim
௘→଴

ݐ)݂ + (ଵିαݐ߳ − (ݐ)݂
߳ 																																																				(14) 

 
which, for differentiable functions, simplifies to: 
 

(ݐ)α݂ܦ = 	 ଵିα݂ݐ  (15)																																																				(ݐ)′
 
Similarly, for ݂(ݔ), the conformable fractional derivative of order β with respect to xis: 
 

(ݔ)௫α݂ܦ = 	 ଵିஒ݂ݔ  (16)																																																				(ݔ)′
 
Reducing the PDE to an ODE Using a Traveling Wave Transformation 
To find a traveling wave solution, we assume: 
 

,ݔ)ݑ (ݐ = 	ܷ(ξ),	 where ξ = ݔ −  (17)   ݐܿ
 
Here, cis the wave speed and ݐఈmodifies the wave based on the fractional order of the time 
derivative. This transformation converts the fractional PDE into a fractional ODE in terms of ξ: 
 

ܳ ቀܷ,ܦక
ఉܷ,ܦకక

ఉ ܷ, … ቁ = 	0                                                    (18) 
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Assuming a Solution Form in the Generalized Kudryashov Method 
In the Generalized Kudryashov Method, the solution ܷ(ߦ) is assumed to be a rational function in 
terms of an auxiliary function ߶(ߦ), which satisfies its own fractional ODE: 
 
 

U(ξ) = 	 ∑ ௔೔థ೔(ξ)ొ
೔సబ

∑ ௕ೕథೕ(ξ)ొ
೔సబ

                                                    (19) 

 
where ܽ௜ and ௜ܾ are constants to be determined, and ߶(ߦ) is chosen to satisfy an auxiliary 
fractional differential equation, such as: 
 

కఈ߶(ξ)ܦ = 	λ߶(ξ)(1 − ߶(ξ))                                                    (20) 
 
Or a more complex fractional equation like 
 

కఈ߶(ξ)ܦ = 	߶(ξ) +  ଶ(ξ)                                                    (21)߶ߤ	
 
 
where ߣand µare parameters to be determined. 
Applying the Conformable Fractional Derivative and Setting up Equations 
After choosing an appropriate form for ܷ(ߦ) and an auxiliary equation for ߶(ߦ), follow these 
steps: 

1. Substitute ܷ(ߦ) = U(ξ) = 	 ∑ ௔೔థ೔(ξ)ొ
೔సబ

∑ ௕ೕథೕ(ξ)ొ
೔సబ

into the fractional ODE. 

2. Compute the conformable fractional derivatives ܦకఈܷ(ξ),ܦకଶఈ߶(ξ), etc., as required. 

3. Substitute these into the original fractional ODE, ܳ ቀܷ,ܦకఈܷ,ܦకక
ఉ ܷ, … ቁ = 	0 

4. Collect terms by powers of ߶(ߦ)and set each coefficient to zero. This results in a system 
of algebraic equations for the constants ܽ௜ , ௜ܾ,	ܿ, λ, µ, etc. 

 
Solving the System of Algebraic Equations 
By solving the algebraic system, we determine the values of the constants, allowing us to write 
down an explicit form for ܷ(ߦ). This solution then provides a particular form for ݔ)ݑ,  which ,(ݐ
is a solution to the original fractional PDE. 
 
Example Application 
Suppose the fractional PDE we want to solve is: 
 

	ݑ௧ఈܦ + ௫ܦݑ	
ఉݑ	 + ௫௫ܦ	

ఉ 	ݑ = 	0                                                    (22) 
 
Using the traveling wave transformation ݔ)ݑ, (ݐ = ߦ with(ߦ)ܷ = ݔ −  :ఈthe equation becomesݐܿ
 

	కఈܷܦܿ + కܦܷ	
ఉܷ	 + కకܦ	

ఉ ܷ	 = 	0                                                    (23) 
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Table 1. Comparison of results between exact and computed 
T Exact Approximate Error 
0.00 0.0000000 1.0000000 1.0000e+00 
0.10 0.0990000 1.1111100 1.0121e+00 
0.20 0.1920000 1.2499200 1.0579e+00 
0.30 0.2730000 1.4275300 1.1545e+00 
0.40 0.3360000 1.6598400 1.3238e+00 
0.50 0.3750000 1.9687500 1.5938e+00 
0.60 0.3840000 2.3833600 1.9994e+00 
0.70 0.3570000 2.9411700 2.5842e+00 
0.80 0.2880000 3.6892800 3.4013e+00 
0.90 0.1710000 4.6855900 4.5146e+00 
1.00 0.0000000 6.0000000 6.0000e+00 

Fig. 1: Graphical view of Fractional Conformable Derivative Solution 
Conclusion 
The Generalized Kudryashov Method for Fractional Conformable Derivative is a robust tool for 
solving nonlinear fractional differential equations. The choice of auxiliary function ߶(ߦ) and the 
fractional order derivatives offers flexibility, enabling this method to capture solutions of 
complex nonlinear behaviors with fractional dynamics, which are important in fields like 
anomalous diffusion and wave propagation in complex media. 
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