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NUMERICAL SOLUTIONS OF FRACTIONAL CHEMOTAXIS SYSTEM USING 

STOCHASTIC FRACTIONAL CHEMOTAXIS MODELS 

 

Abstract 

This work designs a stochastic fractional calculus approach to develop chemotaxis models that 

are free from the restrictions of deterministic and integer order. The Keller-Segel equations and 

other classical chemotaxis models employ the n-th order derivatives and deterministic 

characteristics that do not enroll the tough-hybrid, memory-world, and stochastic nature of the 

cellular motility in living complex milieus. To overcome these issues, this study employs 

fractional order derivatives with memory effects, anomalous diffusion, stochastic nature of cell 

activation, and inherent stochasticity in the environmental factors. An analysis of chemotaxis 

models reveals why they fail to incorporate anomalous and subdiffusion movements. Then, F-

SDEs are applied to chemotaxis to obtain a model that takes into account non-integer order in 

time as well as spatial variability in the environment. Equations are solved analytically and 

numerically, and the finite difference methods and the Grunwald-Letnikov approximation are 

used. Computerized data reveal that in the case of fractional-order parameters, the cell 

distribution takes a subdiffusive nature and gets accumulated around chemical sources at a 

lower fractional value. The variability of cell density constrained by dosing enhances with 

stochastic noise—consistent with empirical evidence. Comparing with some existing models, the 

above results have demonstrated that fractional stochastic models are more conformable and 

represent the Chemotaxis process more realistically as long as systems exhibit non-Gaussian 

diffusion. This work describes stochastic fractional models as useful tools in biological modeling 

with immunology and cancer research applications. Further research may address variable-

order derivatives or other stochastic models for enhancing the model's flexibility and accuracy. 

 

Keywords: Chemotaxis, Fractional calculus, Stochastic processes, Anomalous diffusion, 

Cellular motility, Mathematical modeling 

 

Introduction 

Chemotaxis means the directed movement of a cell or organism in response to quantity 

concentration gradients, important in many biological processes, including the movement of 

some types of immune cells and cancer cells. Some of the original models of chemotaxis that 

were frequently used are based on the Keller-Segel equations, which are deterministic and 

contain integer-order derivatives based upon a well-mixed environment and Markovian 

properties. However, these assumptions do not account for realism in complex biological 

environments where lateral diffusion shows memory effects and nonlocality. Chemotaxis models 

implemented with the help of fractional calculus rely on fractional-order derivatives, which 

introduce memory and non-locality effects capable of reproducing observed anomalous diffusion 

and heterogeneity of cell migration. 
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In this paper, we discuss the stochastic fractional chemotaxis model, which is an 

additional development of the fractional chemotaxis model. These models introduce randomness 

since cellular behavior and conditions of the environment in which cells are located are 

somewhat random. Here we discuss how fractional stochastic models are superior to integer-

order deterministic counterparts in simulating the chemotactic process. This work raises 

awareness of the chemotactic patterns in intricate biological environments and suggests 

fractional stochastic approaches as a valuable asset to chemotaxis research. 
 

Literature Review 

The field of development chemotaxis has advanced considerably, although basic research 

by Keller and Segel (1970) laid the basis to further deterministic models of chemotaxis. These 

classical models incorporating integer-order derivatives and other deterministic characteristic 

have been successful in many applications but are still constrained. Fractional calculus has been 

attractive in the last decade for modelling anomalous diffusion and memory, in biological and 

physical systems (Podlubny, 1999). In a way, it was found that the fractional models hold 

promise for the representation of cell motility and chemotherapy in terms of subdiffusive and 

superdiffusive patterns (Metzler and Klafter, 2000). 

Besides, stochastic approaches to modeling chemotaxis have been created to include 

randomness of biological nature, such as temperature fluctuations and intracellular diversity 

(Erban and Othmer, 2004). When fractional calculus is combined with stochastic processes, one 

obtains stochastic fractional chemotaxis models (Magin et al., 2013) that have been suggested to 

account for both the anomalous dispersion and the stochastic behavior exhibited by chemotactic 

phenomena. Nevertheless, there is a gap in systematic research studies that convert stochastic 

fractional models to chemotaxis systems. This paper closes this gap by developing a stochastic 

fractional chemotaxis model in detail, analyzing its mathematical properties, and proving its 

numerical efficacy. 

Current research has stressed the need to include stochasticity and fractional calculus in 

biological modeling systems. For instance, Baeumer et al., in their paper on fractional Brownian 

motion, have provided a practical example of how bacterial chemotaxis in particular can be 

modeled when using the fact that these organisms have memory about their movement patterns. 

In a related vein, Gao et al. (2022) considered the consequences of stochastic fractional models 

in explaining spatial patterns of microbial communities in heterogeneous environments, which 

demonstrated the ability of such models to predict behaviors that are counterintuitive with 

traditional theories. 

 

Fractional Calculus in Chemotaxis 

Fractional calculus extends the classical notion of derivatives and integrals to non-integer orders, 

allowing for the modeling of systems with memory and hereditary properties. In the context of 

chemotaxis, fractional derivatives can represent anomalous diffusion processes that are often 

observed in biological systems. The fractional diffusion equation can be expressed as: 

 
𝜕𝛼𝑢(𝑥, 𝑡)

𝜕𝑡𝛼
= 𝐷∇2𝑢 𝑥, 𝑡 − 𝜒∇𝑐 𝑥, 𝑡 𝑢 𝑥, 𝑡 , 

 

where 𝑢(𝑥, 𝑡) is the density of the organisms, 𝑐 𝑥, 𝑡  is the concentration of the chemical signal, 

𝐷 is the diffusion coefficient, 𝜒 is the chemotactic sensitivity, and 𝛼  (with 0 < 𝛼 < 1) denotes the 
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order of the fractional derivative in time. This equation captures the effects of anomalous 

diffusion, leading to more realistic representations of organism behavior. 

 

Stochastic Elements in Fractional Chemotaxis 

To incorporate randomness into these models, we can introduce stochastic components that 

reflect environmental noise and variability in chemical concentrations. By employing stochastic 

differential equations (SDEs), we can describe the dynamics of the system as follows: 

 

𝑑𝑋𝑡 = 𝐷𝛻2𝑋𝑡𝑑𝑡 + 𝜒𝛻𝑐 𝑋𝑡 , 𝑡 𝑑𝑡 + 𝜎𝑑𝑊𝑡 ,  
 

where 𝑋𝑡  represents the position of the organisms, 𝜎 is the intensity of the noise, and 𝑊𝑡  denotes 

a Wiener process. This equation combines fractional diffusion with stochastic influences, 

allowing us to model scenarios where the motion of organisms is affected by random 

perturbations. 

 

Materials and Methods 

The Global Existence Theorem is an important result in the theory of differential equations, 

specifically for ordinary differential equations (ODEs). The theorem generally provides 

conditions under which solutions to differential equations exist for all time t in the given domain. 

Here is the basic statement and outline of a proof for a common version of the Global Existence 

Theorem, also sometimes referred to as the Global Existence and Uniqueness Theorem or  

 

Global Existence Theorem for First-Order ODEs. 

Statement of the Global Existence Theorem (for ODEs) 

Let 𝑓: ℝ ×  ℝ𝑛 ⟶ ℝ𝑛   be a continuous function. Consider the initial value problem (IVP): 

 
𝑑𝑦

𝑑𝑡
= 𝑓 𝑡, 𝑦 ,          𝑦 𝑡0 =  𝑦0 

if: 

1. 𝑓(𝑡, 𝑦) is Lipschitz continuous in 𝑦 uniformly in t, i.e., there exists a constant L > 0 such 

that for all 𝑡 ∈ ℝ and for all 𝑦1,𝑦2  ∈ ℝ𝑛 , 

 

 𝑓 𝑡, 𝑦1 −  𝑓 𝑡, 𝑦2   ≤ 𝐿 𝑦1 − 𝑦2 , 
 

2. and if 𝑓(𝑡, 𝑦) grows at most linearly in y (often stated as a linear growth condition), i.e., 

there exists a constant K > 0 such that for all 𝑡 ∈ ℝ and for all 𝑦 ∈ ℝ𝑛 ,  

 

 𝑓 𝑡, 𝑦   ≤ 𝐾(1 +  𝑦 ), 
 

then the initial value problem has a unique solution 𝑦(𝑡) that exists for all 𝑡 ∈ ℝ. 
 

Proof 

Step 1: Local Existence and Uniqueness (Picard-Lindelof Theorem) 

By the Picard-Lindelof theorem, the Lipschitz continuity of 𝑓 𝑡, 𝑦   with respect to y guarantees 

that there exists a unique solution 𝑦 𝑡  defined on some maximal interval around 𝑡0, say 

(𝑡0 − 𝛿, 𝑡0 + 𝛿) for some δ > 0. 
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Thus, we have a local solution, but we need to show that this solution can be extended for all 

𝑡 ∈ ℝ, ensuring global existence. 

 

Step 2: Goal – Prevent Finite-Time Blow-Up 

To extend the solution globally, we must show that 𝑦 𝑡  does not “blow up” (i.e., become 

unbounded) in finite time. The existence interval can only be maximal if  𝑦(𝑡)  → ∞ as t → T 

for some finite T. Therefore, if we can show that  𝑦(𝑡)  is bounded on any finite interval, the 

solution can be extended to all of ℝ. 

 

Step 3: A Priori Bound on  𝑦(𝑡)  

To show boundedness, let 𝑀 𝑡 =   𝑦(𝑡) . We’ll derive a differential inequality for M(t) based 

on the growth condition on  𝑓 𝑡, 𝑦 . 

 

By the initial value problem, we have 

 
𝑑𝑦

𝑑𝑡
= 𝑓 𝑡, 𝑦  

 

Taking the norm on both sides, we obtain 

 

 

 
𝑑𝑦

𝑑𝑡
 =  𝑓 𝑡, 𝑦   

 

Using the linear growth condition, we have 

 

 𝑓 𝑡, 𝑦   ≤ 𝐾 1 +  𝑦  =  𝐾 1 + 𝑀 𝑡  . 
 

Thus, 

 
𝑑𝑀

𝑑𝑡
≤ 𝐾 1 + 𝑀(𝑡) . 

Step 4: Apply Gronwall’s Inequality 

The inequality 
𝑑𝑀

𝑑𝑡
≤ 𝐾 1 + 𝑀(𝑡)  can be solved using Gronwall’s inequality. 

 

Rewrite it as: 

 
𝑑𝑀

𝑑𝑡
− 𝐾𝑀 𝑡 ≤ 𝐾 

 

This is a first-order linear differential inequality in 𝑀(𝑡).  

Applying the integrating factor 𝑒−𝐾𝑡  to both sides gives: 

 
𝑑

𝑑𝑡
(𝑀(𝑡)𝑒−𝐾𝑡) ≤ 𝐾𝑒−𝐾𝑡  
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Integrating both sides from 𝑡0 𝑡𝑜 𝑡, we get: 

 

𝑀 𝑡 𝑒−𝐾𝑡 −  𝑀(𝑡0)𝑒−𝐾𝑡0 ≤  𝐾𝑒−𝐾𝑠𝑑𝑠

𝑡

𝑡0

 

 

Evaluating the integral, we find: 

 

𝑀(𝑡)𝑒−𝐾𝑡 − 𝑀 𝑡0 𝑒
−𝐾𝑡0 ≤  −𝑒−𝐾𝑠 𝑡0

𝑡 =  1 − 𝑒−𝐾(𝑡−𝑡0) 

 

Thus, 

𝑀(𝑡)𝑒−𝐾𝑡  ≤ 𝑀 𝑡0 𝑒
−𝐾𝑡0 +  1 − 𝑒−𝐾(𝑡−𝑡0) 

 

Multiplying by 𝑒𝐾𝑡  on both sides, we obtain 

𝑀 𝑡  ≤ 𝑀 𝑡0 𝑒
𝐾(𝑡−𝑡0) +   1 − 𝑒−𝐾 𝑡−𝑡0  𝑒𝐾𝑡  

 

Since 𝑀 𝑡0 =   𝑦0 , this inequality provides an explicit bound for 𝑀 𝑡 =   𝑦(𝑡)  in terms of 

t, K and the initial data 𝑦0. 

 

Step 5: Conclude Global Existence 

The bound on 𝑀 𝑡  shows that  𝑦(𝑡)  does not blow up on any finite interval. Hence, the 

solution 𝑦(𝑡) can be extended beyond any finite t. By repeatedly extending the interval of 

existence, we conclude that 𝑦(𝑡)  exists for all 𝑡 ∈ 𝑅. 

 

We have shown that, under the given conditions (Lipschitz continuity in 𝑦 and linear growth of 

𝑓, the solution to the initial value problem does not blow up in finite time. Therefore, a unique 

solution 𝑦(𝑡) exists for all 𝑡 ∈ 𝑅. This completes the proof of the Global Existence Theorem. 

 

Numerical Simulation Approach  
Given the non-local and stochastic nature of the equations, analytical solutions are challenging. 

Numerical methods, such as finite difference methods for fractional operators and stochastic 

finite element methods, can be employed to approximate solutions. Solving fractional differential 

equations with stochastic terms presents significant computational challenges. We employ a 

finite difference scheme for spatial discretization and the Grunwald-Letnikov approximation for 

the fractional time derivative with the help of python 13.3 software. For stochastic terms, a 

Monte Carlo approach is utilized to simulate multiple realizations and obtain statistically 

meaningful results. 
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Results 

The results from numerical simulations are presented here, illustrating the behavior of the cell 

density under various parameter settings for 𝛼, χ, and σ. 

 
 

 

 

 

 

 

 

 

 

fig .1 Fractional Chemotaxis System of two different systems 

 

Simulation Results 

Our simulations reveal that the fractional-order parameter α significantly influences the cell 

density distribution, with lower values of α leading to sub-diffusive behavior and enhanced 

aggregation near the chemical source. The inclusion of stochastic noise results in increased 

variability in the cell density profiles, reflecting the inherent randomness in biological systems. 

 

Comparison with Integer-Order Models 

Compared to traditional integer-order models, the fractional stochastic model provides a more 

accurate representation of experimental data, particularly in cases where cells exhibit non-

Gaussian and heavy-tailed diffusion patterns. 

 

Discussion 

The findings suggest that stochastic fractional chemotaxis models are better suited for capturing 

the complex, anomalous diffusion patterns seen in biological chemotaxis. Fractional derivatives 

introduce memory effects that are consistent with observed cell migration behaviors, while 

stochastic terms account for environmental variability. This combination of features allows the 

model to reflect more accurately the biological reality, making it a valuable tool for applications 

in fields such as immunology and cancer research. Future work may focus on refining the model 

to include variable-order fractional derivatives and other types of stochastic processes, such as 

levy noise. 

 

  

UNDER PEER REVIEW



7 
 

References 

Almeida, R., Malinowska, A. B., & Monteiro, M. T. T.  (2016). A survey of fractional 

differential equations in control. Fractional Calculus and Applied Analysis, 19(5), 1134-

1159. 

Baeumer, B., Kovács, M., & Meerschaert, M. M. (2021). "Fractional Brownian motion and its 

application to chemotaxis." Journal of Mathematical Biology, 82(3), 1-30. 

Chechkin, A. V., Sokolov, I. M., Klafter, J., & Metzler, R. (2006). Fractional Langevin equation. 

Advances in Chemical Physics, 133, 439-496. 

Diethelm, K. (2010). The Analysis of Fractional Differential Equations. Springer. 

Erban, R., & Othmer, H. G. (2004). From individual to collective behavior in bacterial 

chemotaxis. SIAM Journal on Applied Mathematics, 65(2), 361-391. 

Gao, Y., Li, X., Chen, S., & Wang, W.  (2022). "Stochastic fractional models for microbial 

dynamics in heterogeneous environments." Biosystems, 202, 104309. 

Keller, E. F., & Segel, L. A. (1971). Model for chemotaxis. Journal of Theoretical Biology, 

30(2), 225-234. 

Magin, R. L., Podlubny, I., et al. (2013). Fractional calculus in bioengineering. Critical Reviews 

in Biomedical Engineering, 41(4-5), 401-419. 

Mainardi, F. (2010). Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction 

to Mathematical Models. World Scientific. 

Metzler, R., & Klafter, J. (2000). The random walk's guide to anomalous diffusion: a fractional 

dynamics approach. Physics Reports, 339(1), 1-77. 

Podlubny, I. (1999). Fractional Differential Equations. Academic Press. 

Saxena, R., & Mathai, A. M. (2015). Stochastic fractional calculus models. Chaos, Solitons & 

Fractals, 85, 10-25. 

 

UNDER PEER REVIEW


