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Abstract  

The deformation of internally pressurized hollow cylinder made of vulcanized 

rubber material is considered. The analysis of the deformation resulted second 

order ordinary differential equation which sought for D operator Method of 

solution for the determination of displacement and stresses. Appropriate boundary 

conditions are set up in determining the constants involved in the solution. A 

closed solution for the displacement and stresses at any cross section of the 

cylinder was achieved. 
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1. Introduction 

Cylindrical materials such as rubber tubes, have gain keen interest in the recent 

times because of their numerous applications in various spheres of life. Cylindrical 

materials  such as tyres, rods, hydraulic hoses, wires, shocks, tubes Seals, vibration 

absorbers their mechanical properties play important role in their usage. 

Applications in engineering field, cylindrical tubes are subject to internal pressures 

and as a result, they undergo finite deformations. Before the analysis of this 

problem was done only on Small deformations with the assumption that, the 



material was linear elastic but for the finite deformations, the prediction results not 

accurate. Through studies, it is well known that, rubber- like materials of various 

shapes show non-linear Property (behaviour). Therefore, a better understanding 

and knowledge of deformations mechanism of numerous structures and materials 

under different loading conditions must be known due to a great important to 

materials testing and products development.The analysis of the deformation of 

internally pressurized hollow cylinder of a vulcanized rubber material is 

considered. The aim of the analysis is to determine the displacements and stresses 

caused by the internal pressure at any cross section of the hollow cylinder. The 

Vulcanized rubber which is a natural rubber mixed with sulphur during the 

processes of vulcanization. The sulphur added to the natural rubber increases the 

shear modulus of the rubber.Erumaka (1) worked on internally pressurized 

vulcanized rubber where he obtained a non trivial solution for the 

displacement.Ejike and Erumaka (2) worked on deformation of a rotating circular 

cylinder made of Blatz-ko material.Anani and Gholamhosein(3) worked on 

“spherical material, Stress analysis of thick pressure vessel composed of 

incompressible hyperelastic materials where Neo Hookean strain energy function 

was used to determine the stress and displacement of spherical shell that is 

axisymmetric radially deformed under internal and external pressure. Exact 

solutions were derived for stress and stretch in a thick hyperelastic spherical shell 



and the effect of the structure parameter for different examples was 

discussed”.Chung et al (4) analyzed the deformation of internally pressurized 

hollow cylinder and spheres for Blatz-ko type of compressible elastic material.The 

results showed that, when the ratio of the outer undeformed radius to the inner 

undeformed is higher than the critical value, the shear bifurcation occurs before the 

maximum pressure is reached, while the reverse occurs when the ratio is lower 

than the critical value. Huang [5] worked on finite displacement of a hollow sphere 

under internal and external pressures.Aani and Rahimi (6) investigated the 

displacement and stresses of axisymmetric radial deformation of the shell. They 

used Neo-Hookean strain energy function to obtain the behaviour of the material. 

The results presented show that the outer and inner radius is an important 

parameter which can be mirrored to some applications in order to control the 

stresses .Aani and Rahimi (7). determined  the stability of internally pressurized 

thick-walled spherical and cylindrical shells made of functionally graded 

incompressible. Kulcu (8) investigated a new strain energy function in other to 

describe the hyperelasticbehaviour of rubber-like materials under various 

deformation. The strain energy function represents an invariant based model which 

has two material constants. This model was tested with the experimental data of 

vulcanized rubbers, collagen and fibrin just like Levinson and Burgess did [14]. 

The parameters constants were kept constant when placed under certain types of 



loads. It was observed that there is an agreement between the model and the 

experimental data for all materials.Darijani and Bahremen (9) used polynomial 

hyperelastic models to obtain a closed form solution for analyses of rubbery solid 

circular cylinder. Robert et al (10) with “the use of neo-Hookean and the Mooney–

Rivlin models found the strain energy function for isotropic incompressible solids 

demonstrating a linear relationship between shear stress and amount of shear, and 

between torque and amount of twist, when subject to large simple shear or torsion 

deformations”. Gao (11) in his work titled“Elasto-plastic analysis of an internally 

pressurized thick-walled cylinder using a strain gradient plasticity theory.The 

numerical data was demonstrated that the classical plasticity-based solution and the 

gradient plasticity-based solution predict almost identical results. Fracture 

mechanics analysis of cylindrical pressure vessels was carried out”. Nabham et. al., 

(12) study the effect of the stress generated for an internally pressurized thick 

walled cylinders containing an internal radial hole using finite element method. His 

work shown that hoop stress increases due to increase of the hole parameter, 

diameter and depth. Moreover, the characterizations of notch may be used to 

determine the maximum stress limit.Darijani and Bahremen (13) used polynomial 

hyperelastic models to obtain a closed form solution for analyses of rubbery solid 

circular cylinder. Anani and Gholamhosein(14) worked on spherical material, 

Stress analysis of thick pressure vessel composed of incompressible hyperelastic 



materials where Neo Hookean strain energy function was used to determine the 

stress and displacement of spherical shell that is axisymmetric radially deformed 

under internal and external pressure. Elkholy et. al (15) study on  “Finite Element 

Analysis of Stresses Caused by External Holes in Hydraulic Cylinders.In this 

present paper we sought for a closed solution using D-operator method of solution 

of second order ordinary differential equation for the determination of stresses and 

displacement across a hollow cylindrical pipe made of vulcanized rubber material”. 

2. Formulation of the deformation equation   

Let consider an open regionܦ଴ = :(ܼ,	߆,ܴ)} ܽ < ܴ < ܾ, 0 < ߆ <  denote the {ߨ2

cross section of a right circular pipe with inner radius a and outer radius b in its 

undeformed configuration. The pipe is subjected to a uniform internal pressure of 

magnitude ߩ. The resulting deformation is a one to one axisymmetric 

deformation which maps the point with cylindrical polar coordinate (ܴ,߆	,ܼ) in 

the undeformed  configurationܦ଴ to the point (ܴ,߆	,ܼ) in the deformed region ܦ 

such that  

ݎ = ,(ܴ)ݎ ߠ = ,߆ ݖ = ܼ(1) 

where ݎ(ܴ) ∈ ,ܽ]ଶܥ ܾ] is to be obtained 
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The deformation gradient tensor F for equation (1) is given as 
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The Left Cauchy-Green deformation gradient tensor B associated with (1) is given 

as 
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Where ܹ(ܫଵ, ,ଶܫ =ଷ) is the strain energy function and ௜ܹܫ
డௐ
డூ೔

, ݅ = 1, 2, 3. 

Here we consider compressible isotropic elastic vulcanized rubber material 
characterized by the elastic potential 
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3. Stress tensor ࣎: The stress tensor for compressible vulcanized rubber 

material is given by 
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In components form of the polar cylindrical material 
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Comparing (6) and (7), we have 

߬௥௥ = 	݇ଶ + ఓோ௥ೃ
௥

(8.1) 

߬ఏఏ = 	݇ଶ + ఓ௥
௥ೃோ

(8.2) 

߬௭௭ = 	݇ଶ + ఓோ
௥ೃ௥

(8.3) 



߬ఏ௥ = ߬௥ఏ = ߬௭௥ = ߬௥௭ = ߬௭ఏ = ߬ఏ௭ = 0 (8.4) 
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   and  ܽ < ݎ < ܾ 

4. Equation of Equilibrium 

The equilibrium equation is given by  

Divܶ=0   (9) 

In component form, we have 
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where ܤ௥  and z vectors ߠ ,௭ are components of the body forces  in rܤ	݀݊ܽ	ఏܤ,

respectively. In the absence of body force and the non-zero component of 

equilibrium equation is the radial component given by 
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Substituting (8) in (12) we have 
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Using (14) and (15), (13) becomes 
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The auxillary equation of equation (16) is given as 

݉ଶ − 1 = 0 
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5. Boundary conditions 

The pipe is subjected to a uniform internal pressure of magnitude ߩ, that is 

߬௥௥ =  which results to the boundary conditions of the form ߩ	−

(ܽ)ݎ = (ܾ)ݎ	݀݊ܽ	߮− = 0(18) 

Using equation (18) in equation (17), we have equations (19) and (20) given below 
as 
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Therefore the displacement ݎ(ܴ) is given as 
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Using equation (21) and (22) in (8) we obtain the components of the stresses. 

6. Maximum displacement 

ݎ̇ = 0 and ܴ = ݎ̈ . ܾ݅± = ିଶ௔ఝ௕మ

(௕మି௔మ)ோయ
 

The maximum displacement may not be achievable since ܴ = ±ܾ݅ 



    7. Result and discussion 

Let ߮ = 0.75݉݉	,ܽ = 10݉݉,ܾ = ߤ ,30݉݉ =  in (21), (22) and ܽ݌ܩ0.0006
(8.1) to obtain Table 1 

 

Table 1: The table shows values of the initial radius in mm and the 
corresponding values of the current radius and displacement gradient.  

R r(R) ̇ݎ ߬௥௥ =  ߩ−

10 -0.7500 0.09375 -0.49910 
12 -0.5906 0.06797 -0.49910 

14 -0.4714 0.05242 -0.49910 

16 -0.3773 0.04233 -0.49910 

18 -0.3000 0.03517 -0.49910 

20 -0.2344 0.03047 -0.49910 

22 -0.1773 0.02681 -0.49910 

24 -0.1266 0.02402 -0.49910 

26 -0.0808 0.02186 -0.49910 

28 -0.0388 0.02014 -0.49910 

30 -0.0000 0.01875 -0.49910 

 



 
Figure 1: A graph of equation (21) with undeformed radius plotted against 
displacement. 

As the radius of the hollow cylinder made of vulcanized rubber increases the 
displacement of the material increases. 

 

 
Figure 2: A graph of equation (22) with undeformed radius plotted against 
displacement gradient. 

As the radius of the hollow cylinder made of vulcanized rubber increases the 
displacement gradient decreases. 
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7.Conclusion 

This present work establish a closed solution for the displacement and stresses as 
resulting of internally pressurized hollow cylindrical pipe made of vulcanized 
rubber material. A graph of undeformed radius against displacement is plotted as 
shown in figure 1. Equation (21) gives the displacement. The components of the 
stress at any cross section of the hollow cylindrical pipe made of vulcanized rubber 
material was obtained. It was observed that as the radius of the hollow cylinder 
made of vulcanized rubber increases the deformation gradient decreases and the 
radius of the hollow cylinder made of vulcanized rubber increases with increase in 
the displacement of the material.At maximum displacement ̇ݎ = 0, we have that 
ܴ = ±ܾ݅. This can be interpreted that maximum displacement may not be reached 
until collapse of the cylindrical tube that is no carrying capacity of material. The 
loads have to be regulated to avoid bread down of the material. 
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